49 research outputs found

    Domain Adaptive Transfer Learning for Fault Diagnosis

    Full text link
    Thanks to digitization of industrial assets in fleets, the ambitious goal of transferring fault diagnosis models fromone machine to the other has raised great interest. Solving these domain adaptive transfer learning tasks has the potential to save large efforts on manually labeling data and modifying models for new machines in the same fleet. Although data-driven methods have shown great potential in fault diagnosis applications, their ability to generalize on new machines and new working conditions are limited because of their tendency to overfit to the training set in reality. One promising solution to this problem is to use domain adaptation techniques. It aims to improve model performance on the target new machine. Inspired by its successful implementation in computer vision, we introduced Domain-Adversarial Neural Networks (DANN) to our context, along with two other popular methods existing in previous fault diagnosis research. We then carefully justify the applicability of these methods in realistic fault diagnosis settings, and offer a unified experimental protocol for a fair comparison between domain adaptation methods for fault diagnosis problems.Comment: Presented at 2019 Prognostics and System Health Management Conference (PHM 2019) in Paris, Franc

    Deep feature learning network for fault detection and isolation

    Get PDF
    Prognostics and Health Management (PHM) approaches typically involve several signal processing and feature engineering steps. The state of the art on feature engineering, comprising feature extraction and feature dimensionality reduction, often only provides specific solutions for specific problems, but rarely supports transferability or generalization: it often requires expert knowledge and extensive intervention. In this paper, we propose a new integrated feature learning approach for jointly achieving fault detection and fault isolation in high-dimensional condition monitoring data. The proposed approach, based on Hierarchical Extreme Learning Machines (HELM) demonstrates a good ability to detect and isolate faults in large datasets comprising signals of different natures, non-informative signals, non-linear relationships and noise. The method includes stacked auto-encoders that are able to learn the underlying high-level features, and a one-class classifier to combine the learned features in an indicator that represents the deviation from the normal system behavior. Once a deviation is identified, features are used to isolate the most deviating signal components. Two case studies highlight the benefits of the approach: First, a synthetic dataset with the typical characteristics of condition monitoring data and different types of faults is applied to evaluate the performance with objective metrics. Second, the approach is tested on data stemming from a power plant generator interturn failure. In both cases, the results are compared to other commonly applied approaches for fault isolation

    Anomaly Detection And Classification In Time Series With Kervolutional Neural Networks

    Full text link
    Recently, with the development of deep learning, end-to-end neural network architectures have been increasingly applied to condition monitoring signals. They have demonstrated superior performance for fault detection and classification, in particular using convolutional neural networks. Even more recently, an extension of the concept of convolution to the concept of kervolution has been proposed with some promising results in image classification tasks. In this paper, we explore the potential of kervolutional neural networks applied to time series data. We demonstrate that using a mixture of convolutional and kervolutional layers improves the model performance. The mixed model is first applied to a classification task in time series, as a benchmark dataset. Subsequently, the proposed mixed architecture is used to detect anomalies in time series data recorded by accelerometers on helicopters. We propose a residual-based anomaly detection approach using a temporal auto-encoder. We demonstrate that mixing kervolutional with convolutional layers in the encoder is more sensitive to variations in the input data and is able to detect anomalous time series in a better way.Comment: 9 pages, 1 figure, 4 table

    Decision Support System for an Intelligent Operator of Utility Tunnel Boring Machines

    Full text link
    In tunnel construction projects, delays induce high costs. Thus, tunnel boring machines (TBM) operators aim for fast advance rates, without safety compromise, a difficult mission in uncertain ground environments. Finding the optimal control parameters based on the TBM sensors' measurements remains an open research question with large practical relevance. In this paper, we propose an intelligent decision support system developed in three steps. First past projects performances are evaluated with an optimality score, taking into account the advance rate and the working pressure safety. Then, a deep learning model learns the mapping between the TBM measurements and this optimality score. Last, in real application, the model provides incremental recommendations to improve the optimality, taking into account the current setting and measurements of the TBM. The proposed approach is evaluated on real micro-tunnelling project and demonstrates great promises for future projects.Comment: 17 pages, 5 figures, 3 table

    Link dependent origin-destination matrix estimation : nonsmooth convex optimisation with Bluetooth-inferred trajectories

    Get PDF
    This thesis tackles the traditional transport engineering problem of urban traffic demand estimation by using Bluetooth data and advanced signal processing algorithms. It proposes a method to recover vehicles trajectories from Bluetooth detectors and combining vehicle trajectories with traditional traffic datasets, traffic is estimated at a city level using signal processing algorithms. Involving new technologies in traffic demand estimation gave an opportunity to rethink traditional approaches and to come up with new method to jointly estimate origin-destinations flows and route flows. The whole methodology has been applied and evaluated with real Brisbane traffic data

    Interpretable Detection of Partial Discharge in Power Lines with Deep Learning

    Full text link
    Partial discharge (PD) is a common indication of faults in power systems, such as generators, and cables. These PD can eventually result in costly repairs and substantial power outages. PD detection traditionally relies on hand-crafted features and domain expertise to identify very specific pulses in the electrical current, and the performance declines in the presence of noise or of superposed pulses. In this paper, we propose a novel end-to-end framework based on convolutional neural networks. The framework has two contributions. First, it does not require any feature extraction and enables robust PD detection. Second, we devise the pulse activation map. It provides interpretability of the results for the domain experts with the identification of the pulses that led to the detection of the PDs. The performance is evaluated on a public dataset for the detection of damaged power lines. An ablation study demonstrates the benefits of each part of the proposed framework.Comment: 13 pages, 4 figures, 2 table

    A Primal-Dual Algorithm for Link Dependent Origin Destination Matrix Estimation

    Full text link
    Origin-Destination Matrix (ODM) estimation is a classical problem in transport engineering aiming to recover flows from every Origin to every Destination from measured traffic counts and a priori model information. In addition to traffic counts, the present contribution takes advantage of probe trajectories, whose capture is made possible by new measurement technologies. It extends the concept of ODM to that of Link dependent ODM (LODM), keeping the information about the flow distribution on links and containing inherently the ODM assignment. Further, an original formulation of LODM estimation, from traffic counts and probe trajectories is presented as an optimisation problem, where the functional to be minimized consists of five convex functions, each modelling a constraint or property of the transport problem: consistency with traffic counts, consistency with sampled probe trajectories, consistency with traffic conservation (Kirchhoff's law), similarity of flows having close origins and destinations, positivity of traffic flows. A primal-dual algorithm is devised to minimize the designed functional, as the corresponding objective functions are not necessarily differentiable. A case study, on a simulated network and traffic, validates the feasibility of the procedure and details its benefits for the estimation of an LODM matching real-network constraints and observations

    Learning Informative Health Indicators Through Unsupervised Contrastive Learning

    Full text link
    Condition monitoring is essential to operate industrial assets safely and efficiently. To achieve this goal, the development of robust health indicators has recently attracted significant attention. These indicators, which provide quantitative real-time insights into the health status of industrial assets over time, serve as valuable tools for fault detection and prognostics. In this study, we propose a novel and universal approach to learn health indicators based on unsupervised contrastive learning. Operational time acts as a proxy for the asset's degradation state, enabling the learning of a contrastive feature space that facilitates the construction of a health indicator by measuring the distance to the healthy condition. To highlight the universality of the proposed approach, we assess the proposed contrastive learning framework in two distinct tasks - wear assessment and fault detection - across two different case studies: a milling machines case study and a real condition monitoring case study of railway wheels from operating trains. First, we evaluate if the health indicator is able to learn the real health condition on a milling machine case study where the ground truth wear condition is continuously measured. Second, we apply the proposed method on a real case study of railway wheels where the ground truth health condition is not known. Here, we evaluate the suitability of the learned health indicator for fault detection of railway wheel defects. Our results demonstrate that the proposed approach is able to learn the ground truth health evolution of milling machines and the learned health indicator is suited for fault detection of railway wheels operated under various operating conditions by outperforming state-of-the-art methods. Further, we demonstrate that our proposed approach is universally applicable to different systems and different health conditions
    corecore